## page was renamed from ISELFInalProjectInfo
= ISELFInalProjectInfo =

Information about several subjects regarding the ISEL final project.

== Linux Kernel ==
https://www.kernel.org/pub/linux/kernel/v3.x/linux-3.13.5.tar.xz

== Linux Device Drivers book ==
http://lwn.net/images/pdf/LDD3/ldd3_pdf.tar.bz2

== sysfs ==
http://lxr.free-electrons.com/source/Documentation/filesystems/sysfs.txt

=== What it is: ===
sysfs is a ram-based filesystem initially based on ramfs. It provides a means to export kernel data structures, their attributes, and the  linkages between them to userspace. 
 
sysfs is tied inherently to the kobject infrastructure. Please read  Documentation/kobject.txt for more information concerning the kobject  interface. 

 * /usr/src/linux-3.2.45/Documentation/filesystems/sysfs.txt 

=== Create entry / attributes ===
https://godandme.wordpress.com/2011/04/05/how-to-make-a-sysfs-entry/

http://stackoverflow.com/questions/11063719/kernel-modules-parameters-in-sysfs-quick-reaction-for-changes

http://stackoverflow.com/questions/11067262/getting-parent-for-kobject-add

== IIO ==
Adapted from http://wiki.analog.com/software/linux/docs/iio/iio

The Industrial I/O subsystem is intended to provide support for devices that in some sense are analog to digital or digital to analog convertors (ADCs, DACs).
Devices that fall into this category are:
 * ADCs
 * Accelerometers
 * Gyros
 * IMUs
 * Capacitance to Digital Converters (CDCs)
 * Pressure Sensors
 * Color, Light and Proximity Sensors
 * Temperature Sensors
 * Magnetometers
 * DACs
 * DDS (Direct Digital Synthesis)
 * PLLs (Phase Locked Loops)
 * Variable/Programmable Gain Amplifiers (VGA, PGA)

== SPI ==

== I2C ==

== ARM AT91SAM9260B ==
http://www.atmel.com/devices/sam9260.aspx

A 210MHz ARM926-based processor with an extensive range of communication peripherals. It embeds FS USB host and device interfaces, a 10/100 Ethernet MAC and an image sensor interface, as well as standard peripherals such as a Multimedia Card Interface (MCI), I2S, USARTs, master/slave SPIs, 16-bit Timers, a TWI and four-channel 10-bit ADC. The external bus interface features controllers for SDRAM and static memories including NAND flash and CompactFlash. The SAM9260 is available in 217-ball LFBGA and 208-pin QFP packages.

== Linux4SAM ==
http://www.at91.com/linux4sam/bin/view/Linux4SAM/WebHome

http://www.at91.com/linux4sam/bin/view/Linux4SAM/GettingStarted

http://www.at91.com/linux4sam/bin/view/Linux4SAM/IioAdcDriver

== FXOS8700CQ ==
http://www.freescale.com/webapp/sps/site/prod_summary.jsp?code=FXOS8700CQ

Freescale’s FXOS8700CQ 6-axis sensor combines industry leading accelerometer and magnetometer sensors in a small 3 x 3 x 1.2 mm QFN plastic package. The 14-bit accelerometer and 16-bit magnetometer are combined with a high-performance ASIC to enable an eCompass solution capable of a typical orientation resolution of 0.1 degrees and sub 5 degree compass heading accuracy for most applications.

Datasheet: http://cache.freescale.com/files/sensors/doc/data_sheet/FXOS8700CQ.pdf

== Hello world linux kernel module on Slackware 14 ==
 * su
 * cd /usr/src/linux/
 * mkdir helloWorld
 * cd helloWorld 
 * nano  Makefile 
{{{
obj-m = helloWorld.o
KVERSION = $(shell uname -r)
all:
        make -C /lib/modules/$(KVERSION)/build M=$(PWD) modules
clean:
        make -C /lib/modules/$(KVERSION)/build M=$(PWD) clean
}}}
 * nano helloWorld.c
{{{#!highlight c
#include <linux/module.h>       /* Required by all modules */
#include <linux/kernel.h>       /* Required for KERN_INFO */
#include <linux/init.h>         /* Required for the macros */

static int __init helloworld_init(void)
{
    printk(KERN_INFO "Hello world\n");
return 0;
}

static void __exit helloworld_exit(void)
{
    printk(KERN_INFO "Bye all.\n");
}

module_init(helloworld_init);
module_exit(helloworld_exit);
MODULE_LICENSE("GPL");
}}}
 * make clean
 * make
 * # tail -f /var/log/messages
 * insmod helloWorld.ko
 * dmesg
 * ls /sys/module # /sys/module/helloWorld should appear
 * rmmod helloWorld.ko

== sysfs sample ==
Based on https://godandme.wordpress.com/2011/04/05/how-to-make-a-sysfs-entry/

Directory located in /usr/src/linux/sysfs_sample

'''Makefile'''
{{{
obj-m = sysfs_sample.o
KVERSION = $(shell uname -r)
all:
        make -C /lib/modules/$(KVERSION)/build M=$(PWD) modules
clean:
        make -C /lib/modules/$(KVERSION)/build M=$(PWD) clean
}}}

'''sysfs_sample.c'''
{{{#!highlight c
/*
indent -linux sysfs_sample.c
make clean
make
insmod sysfs_sample.ko
tail /var/log/messages
cat /sys/module/sysfs_sample/sysfs_sample_attrs/first
cat /sys/module/sysfs_sample/sysfs_sample_attrs/second
cat /sys/module/sysfs_sample/sysfs_sample_attrs/operation
echo "asdf" >  /sys/module/sysfs_sample/sysfs_sample_attrs/operation
cat /sys/module/sysfs_sample/sysfs_sample_attrs/operation
dmesg
rmmod sysfs_sample.ko
*/
#include <linux/module.h>
#include <linux/kernel.h>
#include <linux/init.h>
#include <linux/fs.h>
#include <linux/slab.h>
/*A struct kobject represents a kernel object, maybe a device or so,
such as the things that show up as directory in the sysfs filesystem.*/
struct kobject *sysfs_sample_kobject;
struct int_attribute {
        struct attribute attr;
        int value;
};
struct string_attribute {
        struct attribute attr;
        char value[64];
};
static struct int_attribute first_attribute = {.attr.name = "first",.attr.mode =
            0666,.value = 11, };
static struct int_attribute second_attribute = {.attr.name =
            "second",.attr.mode = 0666,.value = 22, };
static struct string_attribute operation_attribute = {.attr.name =
            "operation",.attr.mode = 0666,.value = "add", };
static struct attribute *sysfs_sample_attributes[] =
    { &first_attribute.attr, &second_attribute.attr, &operation_attribute.attr,
NULL };
/*Called when a read is performed on a attribute file in sysfs */
static ssize_t default_show(struct kobject *kobj, struct attribute *attr,
                            char *buf)
{
        struct int_attribute *intAttr;
        struct string_attribute *stringAttr;
        printk(KERN_INFO "Show called for kobject %s\n", kobj->name);
        printk(KERN_INFO "Attribute name: %s\n", attr->name);
        /* convert to proper struct based on name */
        if (strcmp("operation", attr->name) != 0) {
                intAttr = container_of(attr, struct int_attribute, attr);
                return scnprintf(buf, PAGE_SIZE, "%d\n", intAttr->value);
        } else {
                stringAttr = container_of(attr, struct string_attribute, attr);
                return scnprintf(buf, PAGE_SIZE, "%s\n", stringAttr->value);
        }
}

/*Called when a write is performed on a attribute file in sysfs */
static ssize_t default_store(struct kobject *kobj, struct attribute *attr,
                             const char *buf, size_t len)
{
        struct int_attribute *intAttr;
        struct string_attribute *stringAttr;
        printk(KERN_INFO "Store called for kobject %s\n", kobj->name);

        if (strcmp("operation", attr->name) != 0) {
                intAttr = container_of(attr, struct int_attribute, attr);
                sscanf(buf, "%d", &(intAttr->value));   /*convert char to int */
                return sizeof(int);
        } else {
                stringAttr = container_of(attr, struct string_attribute, attr);
                sscanf(buf, "%s", stringAttr->value);   /*convert char to char */
                printk(KERN_INFO "Sizeof %d\n", sizeof(stringAttr->value));
                return sizeof(stringAttr->value);
        }
}

static struct sysfs_ops sysfs_sample_operations = {.show = default_show,.store =
            default_store, };
static struct kobj_type sysfs_sample_type = {.sysfs_ops =
            &sysfs_sample_operations,.default_attrs =
            sysfs_sample_attributes, };
/*Called on module initialization */
static int __init sysfsexample_module_init(void)
{
        int err = -1;
        printk(KERN_INFO "sysfs_sample init called \n");
        sysfs_sample_kobject =
            kzalloc(sizeof(*sysfs_sample_kobject), GFP_KERNEL);
        if (sysfs_sample_kobject) {
                kobject_init(sysfs_sample_kobject, &sysfs_sample_type);
                // if (kobject_add(sysfs_sample_kobject, NULL, "%s", "sysfs_sample")) {
                if (kobject_add
                    (sysfs_sample_kobject, &THIS_MODULE->mkobj.kobj, "%s",
                     "sysfs_sample_attrs")) {
                        err = -1;
                        printk(KERN_INFO "sysfs_sample creation failed\n");
                        kobject_put(sysfs_sample_kobject);
                        sysfs_sample_kobject = NULL;
                }
                err = 0;
        }
        return err;
}

/*Called on module exit */
static void __exit sysfsexample_module_exit(void)
{
        printk(KERN_INFO "sysfs_sample exit called \n");
        if (sysfs_sample_kobject) {
                kobject_put(sysfs_sample_kobject);
                kfree(sysfs_sample_kobject);
        }
}

module_init(sysfsexample_module_init);
module_exit(sysfsexample_module_exit);
MODULE_LICENSE("GPL");
}}}

== RTC device info ==
https://www.kernel.org/doc/Documentation/rtc.txt

The interrupts are reported via /dev/rtc (major 10, minor 135, read only character device)

The alarm and/or interrupt frequency are programmed into the RTC via various ioctl(2) calls as listed in ./include/linux/rtc.h

The sysfs interface under /sys/class/rtc/rtcN provides access to various rtc attributes without requiring the use of ioctls.

The ioctl() calls supported by /dev/rtc are also supported by the RTC class framework.

== Sysfs support ==
From https://coherentmusings.wordpress.com/2014/02/19/adding-sysfs-support-to-a-driver/

{{{
As the Linux Kernel Development book mentions "The sysfs file system is currently the place for implementing functionality previously reserved for ioctl() calls on device nodes or the procfs filesystem"
}}}

=== ARM Cross compiling ===
https://www.ailis.de/~k/archives/19-ARM-cross-compiling-howto.html

http://frank.harvard.edu/~coldwell/toolchain/

 * http://ftp.slackware.com/pub/slackware/slackware-14.0/source/d/binutils/binutils-2.22.52.0.2.tar.xz
 * http://ftp.slackware.com/pub/slackware/slackware-14.0/source/d/gcc/gcc-4.7.1.tar.xz
 * http://ftp.slackware.com/pub/slackware/slackware-14.0/source/l/glibc/glibc-2.15.tar.xz

Based on gcc and glibc used on the embedded device
 * https://www.kernel.org/pub/linux/kernel/v3.x/linux-3.13.5.tar.xz 
 * http://ftp.gnu.org/gnu/binutils/binutils-2.24.tar.bz2
 * http://ftp.gnu.org/gnu/gcc/gcc-4.8.4/gcc-4.8.4.tar.bz2
 * http://ftp.gnu.org/gnu/glibc/glibc-2.20.tar.xz

http://preshing.com/20141119/how-to-build-a-gcc-cross-compiler/

http://xathrya.web.id/blog/2013/02/28/building-gcc-arm-toolchain-on-slackware64/

=== With emdebian Ubuntu lucid32  ===

 * nano /etc/apt/sources.list
 * apt-get update
 * apt-get install linux-libc-dev-armel-cross libc6-armel-cross  libc6-dev-armel-cross binutils-arm-linux-gnueabi  gcc-4.4-arm-linux-gnueabi
 * apt-get install g++-4.4-arm-linux-gnueabi
 * apt-get install pdebuild-cross
 * apt-get install dpkg-cross qemu
 * cd /tmp
 * wget https://www.kernel.org/pub/linux/kernel/v3.x/linux-3.13.5.tar.xz
 * tar xvif linux-3.13.5.tar.xz
 * mv linux-3.13.5 /usr/src
 * /usr/src/
 * cd /usr/src
 * ln -s linux-3.13.5 linux
 * ls
 * cd linux
 * make ARCH=arm at91sam9260_9g20_defconfig # copy config for ARM at91sam9260
 * make ARCH=arm CROSS_COMPILE=arm-linux-gnueabi-

 * export ARCH=arm
 * export CROSS_COMPILE=arm-linux-gnueabi-
 * export INSTALL_MOD_PATH=/lib/modules/arm/3.13.5/
 * make modules 
 * find . -name "*.ko" | xargs -i file {}
 * make modules_install # to /tmp/lib ....

 * mkdir  -p /usr/src/linux/helloWorld
 * cd /usr/src/linux/helloWorld
Makefile
{{{
obj-m = helloWorld.o
KVERSION=3.13.5
all:
        make -C /lib/modules/$(KVERSION)/build M=$(PWD) modules
clean:
        make -C /lib/modules/$(KVERSION)/build M=$(PWD) clean
}}}

helloWorld.c
{{{
#include <linux/module.h>       /* Required by all modules */
#include <linux/kernel.h>       /* Required for KERN_INFO */
#include <linux/init.h>         /* Required for the macros */

static int __init helloworld_init(void)
{
    printk(KERN_INFO "Hello world\n");
return 0;
}

static void __exit helloworld_exit(void)
{
    printk(KERN_INFO "Bye all.\n");
}

module_init(helloworld_init);
module_exit(helloworld_exit);
MODULE_LICENSE("GPL");
}}}
 * cd helloWorld
 * make clean
 * make

== Simple hello ARM ==
{{{
lsb_release -a
No LSB modules are available.
Distributor ID: Ubuntu
Description:    Ubuntu 10.04.4 LTS
Release:        10.04
Codename:       lucid

$arm-linux-gnueabi-gcc --version
arm-linux-gnueabi-gcc (Debian 4.4.5-8) 4.4.5

$cat hello.c 
#include <stdio.h>

int main()
{
    printf("Hello cross-compiling world!\n");
    return 0;
}

$arm-linux-gnueabi-gcc -static hello.c -o hello
$qemu-arm -cpu arm926 hello
Hello cross-compiling world!

$arm-linux-gnueabi-gcc  hello.c -o hello
$qemu-arm -L /usr/arm-linux-gnueabi/ hello
Hello cross-compiling world!
$file hello
hello: ELF 32-bit LSB executable, ARM, version 1 (SYSV), dynamically linked (uses shared libs), for GNU/Linux 2.6.18, not stripped

export ARCH=arm
export CROSS_COMPILE=arm-linux-gnueabi-
export INSTALL_MOD_PATH=/lib/modules/arm/3.13.5/
cd /usr/src/linux/helloWorld/

cat helloWorld.c
#include <linux/module.h>       /* Required by all modules */
#include <linux/kernel.h>       /* Required for KERN_INFO */
#include <linux/init.h>         /* Required for the macros */

static int __init helloworld_init(void)
{
    printk(KERN_INFO "Hello world\n");
    return 0;
}

static void __exit helloworld_exit(void)
{
    printk(KERN_INFO "Bye all.\n");
    return;
}

module_init(helloworld_init);
module_exit(helloworld_exit);
MODULE_LICENSE("GPL");
MODULE_AUTHOR("DonaldDuck");

make clean
make
scp helloworld.ko root@192.168.1.100:/tmp
# on embedded system
insmod helloworld.ko 
dmesg # should show an hello world
rmmod -f helloworld
}}}

== Hard iron interference calibration ==
{{{#!highlight python
'''
Based on the worked example 1 from AN4246 - Freescale
Calibrating an eCompass in the Presence of Hard and Soft-Iron Interference
http://www.freescale.com/files/sensors/doc/app_note/AN4246.pdf

http://en.wikipedia.org/wiki/Earth's_magnetic_field
Its magnitude at the Earth's surface ranges from 25 to 65 microtesla (0.25 to 0.65 gauss). 

The tesla is the SI unit of the Magnetic field, B.

'''
import numpy as np
import math
import unittest

def calculateBeta(measuresA):
    measures=np.array(measuresA)
    #print '# Measures #'
    #for i in measures: print i
    yMatrix=[]
    #calculate squares for each item
    for m in measures: yMatrix.append( (m[0]*m[0]) +(m[1]*m[1]) + (m[2]*m[2])  )
    yMatrix=np.array(yMatrix)
    #print '# Y matrix #'
    #for i in yMatrix: print i
    xMatrix=[]
    for m in measures: xMatrix.append( [m[0],m[1],m[2],1]  )
    xMatrix=np.array(xMatrix)
    #print '# X Matrix #'
    #for j in xMatrix: print j
    #print "beta = ( X' * X )^-1  * X'*Measures "
    transposeX = np.matrix.transpose( xMatrix )
    #print '# X Matrix transpose#'
    #for j in transposeX: print j
    r1 = np.dot(transposeX , xMatrix)
    #print "r1\n%s"%(r1)
    inv1 = np.linalg.inv(r1)
    #print "inv1\n%s"%(inv1)
    r2 = np.dot(inv1,transposeX)
    #print "r2\n%s"%(r2)
    beta = np.dot(r2,yMatrix)
    #print "beta\n%s"%(beta)
    #vx = beta[0]*0.5
    #vy = beta[1]*0.5
    #vz = beta[2]*0.5
    #print " %f %f %f"%(vx, vy , vz)
    #B = math.sqrt( (beta[3]) + (vx*vx) + (vy*vy) + (vz*vz)  )
    #print "%f uT"%(B)
    #return B
    return beta
########################################################################

class SimpleTestCase(unittest.TestCase):
    def testCalculation(self):
        # the norm of the vector should be between 25 and 65
        #acquired magnetometer measures
        measures=[]
        measures.append([167.4 , -242.4 ,91.7])
        measures.append([140.3 , -221.9 ,86.8])
        measures.append([152.4 , -230.4 ,-0.6])
        measures.append([180.3 , -270.6 ,71.0])
        measures.append([190.9 , -212.4 ,62.7])
        measures.append([192.9 , -242.4 ,17.1])
        Beta = calculateBeta(measures)
        #print "%s "%(Beta)
        vx = Beta[0]*0.5
        vy = Beta[1]*0.5
        vz = Beta[2]*0.5
        # subtract V from the measures ...
        for m in measures:
            # subtract the strong iron effect from the raw measure
            vector=[m[0]-vx,m[1]-vy,m[2]-vz]
            normVector = np.linalg.norm( vector )
            self.assertTrue( normVector>= 25 and normVector <=65 )
            self.assertTrue( normVector>= 47 and normVector <48 )
        
if __name__=='__main__':
    unittest.main()
}}}